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AN EFFICIENT PARALLEL MULTIGRID SOLVER FOR 3-D

CONVECTION-DOMINATED PROBLEMS�

IGNACIO M. LLORENTEy, MANUEL PRIETO-MAT�IASz, AND BORIS DISKINx

Abstract. Multigrid algorithms are known to be highly e�cient in solving systems of elliptic equations.

However, standard multigrid algorithms fail to achieve optimal grid-independent convergence rates in solving

non-elliptic problems. In many practical cases, the non-elliptic part of a problem is represented by the

convection operator. Downstream marching, when it is viable, is the simplest and most e�cient way to solve

this operator. However, in a parallel setting, the sequential nature of marching degrades the e�ciency of the

algorithm. The aim of this report is to present, evaluate and analyze an alternative highly parallel multigrid

method for 3-D convection-dominated problems. This method employs semicoarsening, a four-color plane-

implicit smoother, and discretization rules allowing the same cross-characteristic interactions on all the grids

involved to be maintained. The resulting multigrid solver exhibits a fast grid-independent convergence rate

for solving the convection-di�usion operator on cell-centered grids with stretching. The load imbalance below

the critical level is the main source of ine�ciency in its parallel implementation. A hybrid smoother that

degrades the convergence properties of the method but improves its granularity has been found to be the

best choice in a parallel setting. The numerical and parallel properties of the multigrid algorithm with the

four-color and hybrid smoothers are studied on SGI Origin 2000 and Cray T3E systems.
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1. Introduction. The convergence properties of multigrid algorithms are de�ned by two factors: (1)

the smoothing rate, which describes the reduction of high-frequency error components, and (2) the quality

of the coarse-grid correction, which is responsible for the dumping of smooth error components. In elliptic

problems, all the smooth �ne-grid components are well approximated on the coarse grid built by standard

(full) coarsening. In non-elliptic problems, however, some �ne-grid characteristic components that are much

smoother in the characteristic direction than in other directions, cannot be approximated with standard

multigrid methods (see [2, 3, 4, 7]).

Several approaches aimed at curing the characteristic-component problem have been studied in literature.

These approaches fall into two categories: (1) development of a suitable relaxation scheme to eliminate

not only high-frequency error components but the characteristic error components as well; (2) devising an

adjusted coarse-grid operator to approximate well the �ne-grid characteristic error components.

In many practical problems appearing in computational 
uid dynamics (CFD), the non-elliptic part is
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represented by convection. For convection, the most e�cient and comprehensive relaxation is downstream

marching. If the target discretization is a stable upwind scheme, the downstream marching reduces all (high-

frequency and smooth) error components, solving a non-linear convection equation in just a few sweeps

(a single downstream sweep provides the exact solution to a linearized problem). Incomplete LU (ILU)

decomposition methods act similarly, given a suitable ordering [6]. The downstream marching technique was

successfully applied in solving many CFD problems associated with non-recirculating 
ows (see, e.g., [4]).

However, if the discretization is not fully upwind (e.g., upwind biased) the downstream marching in its pure

form is not viable. One of the most e�cient (also marching type) alternatives often applied to the schemes

that cannot be directly marched is a defect-correction method (see, e.g., [29, 41, 42]). Usually the e�ciency

of these methods is quite satisfactory. Sometimes, however, the convergence rate of the defect-correction

method is grid dependent (see [8, 9]). Another, very important, drawback associated with all marching and

ILU methods is a low parallel e�ciency, because the e�ciency of these methods is essentially based on the

correctness of the sequential marching order.

In methods belonging to the second category, most of the operations can be performed in parallel. These

methods are much more attractive for massive parallel computing. The necessary requirements for coarse-

grid operators used in second-category methods were formulated in [46]. Among the options available in

conjunction with full coarsening are Galerkin coarsening [47], matrix-dependent operators [6], and corrected

coarse-grid operators [17]. Analysis in [46] showed that all these methods have certain drawbacks.

Another way to construct an appropriate coarse-grid operator is to employ semicoarsening [7]. The

multigrid method evaluated in this report uses semicoarsening together with a well-balanced correction

of discrete operators to maintain the same cross-characteristic interaction (CCI) on all the grids. The

relaxation scheme employed in this algorithm is a four-color plane-implicit scheme enabling a very e�cient

parallel implementation. The resulting algorithm is an e�cient highly parallel method for solving the three-

dimensional (3-D) convection operator de�ned on cell-centered grids with stretching.

When studying the optimal parallel implementation of a numerical algorithm, one should consider both

the numerical and parallel properties. The best approach in a sequential setting may not be the optimal one

on a parallel computer. The multigrid method proposed in this report exhibits a very fast convergence rate

but the granularity of its smoother (four-color relaxation) is �ner than that of other common smoothers as

zebra or damped Jacobi. In order to improve the granularity of the solver, we have studied a hybrid smoother

that uses a four-color, zebra or damped Jacobi update depending on the level. As we will show, although

this smoother degrades the convergence properties of the original method, it improves the execution time

of the multigrid cycle in a parallel setting, and so becomes a trade-o� between numerical and architectural

properties.

Section 2 formulates the model problem for the convection equation and introduces the notion of the

low-dimensional prototype. The multigrid method for the one-dimensional prototype is described in Section

3. The 3-D discretizations and the di�culties encountered in multigrid methods solving the convection

operator are explained in Section 4. Section 5 presents the multigrid cycle for the full-dimensional problem.

Section 6 includes numerical results con�rming the e�cient solution of the convection equation on uniform

and stretched grids. Section 7 demonstrates an extension of the tested method to the convection-di�usion

equation. The parallel properties of the MPI implementation of the code on SGI Origin 2000 and Cray T3E

systems are discussed in Section 8. Finally, the main conclusions and future research directions are presented

in Section 9.
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2. Convection Equation. The model problem studied in this Section is the 3-D constant-coe�cient

convection equation

1

j�aj
�
�a � r

�
U = f(x; y; z);(2.1)

where �a = (a1; a2; a3) is a given vector and j�aj =
p
a21 + a22 + a23. The solution U(x; y; z) is a di�erentiable

function de�ned on the unit square (x; y; z) 2 [0; 1] � [0; 1] � [0; 1]. Let ty = a2=a1 and tz = a3=a1 be

non-alignment parameters. For simplicity, we assume a1 � a2; a3 � 0 and, therefore, 1 � ty; tz � 0.

Equation (2.1) can be rewritten as

@�U = f(x; y; z);(2.2)

where � =
x+tyy+tzzp

1+t2y+t
2
z

is a variable along the characteristic of (2.1). Equation (2.1) is subject to Dirichlet

boundary conditions at the in
ow boundary x = 0 and periodic conditions in the y and z directions

U(0; y; z) = g(y; z); U(x; y; z) = U(x; y + 1; z); U(x; y; z) = U(x; y; z + 1);(2.3)

where g(y; z) is a given function.

In the 3-D constant-coe�cient case, which is studied in this paper, characteristics of (2.1) are straight

lines (characteristic lines) aligned with the velocity direction. A function is called a characteristic component

if it is much smoother in the characteristic direction than in other directions.

The problem (2.2) is discretized on the 3-D Cartesian uniform grid with mesh sizes h in the three

directions (target grid). Let ui1;i2;i3 be a discrete approximation to the solution U(x; y; z) at the point

(x; y) = (i1h; i2h; i3h). To derive a proper discretization, we exploit the idea of a low-dimensional prototype

introduced in [3]. Brie
y, the low-dimensional prototype is a convenient discretization of the di�erential

operator in the grid induced on the characteristic manifold by the intersections of this manifold with the

full-dimensional Cartesian grid. For our studies, we choose the low-dimensional prototype to be the (one-

dimensional) �rst-order accurate discretization of the �rst derivative, corresponding to the pure upwind

scheme with an additional streamwise dissipation

1

h�

�
ui1;i2;i3 � ui1�1;i2�ty;i3�tz

�
� �

h�

�
ui1+1;i2+ty ;i3+tz � 2ui1;i2;i3 + ui1�1;i2�ty;i3�tz

�
= fi1;i2;i3 ;(2.4)

where the discretization of the right-hand-side function is fi1;i2;i3 = f(i1h; i2h; i3h) and h� = h
q
1 + t2y + t2z.

3. Multigrid Cycle for Low-Dimensional Prototype. In this section, we de�ne a multigrid cycle

for the low-dimensional prototype problem. All the components of this cycle serve as bases for constructing

corresponding components of the 3-D multigrid cycle described in Sections 4 and 5.

On the grid induced on the characteristic line, the one-dimensional prototype can be reformulated as

L�ui � 1

h�

8>>>>>>>>>><
>>>>>>>>>>:

2

�
ui � ui�1

�
� �

�
ui+1 � 3ui + 2ui�1

�
; i = 1;�

ui � ui�1

�
� �

�
ui+1 � 2ui + ui�1

�
; i = 2; 3; : : :N � 1;�

ui � ui�1

�
� �

�
2ui+1 � 3ui + ui�1

�
; i = N;

2

�
ui � ui�1

�
; i = N + 1:

(3.1)

See Figure 1 for the pictorial explanation of the discretization grids.
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Fig. 1. Cell-centered discretization of the low-dimensional prototype.

3.1. Relaxation Scheme. A multicolor (with p colors) relaxation order is de�ned as follows. One

multicolor relaxation iteration consists of p sweeps, each one passes through (approximately) N=p cells. In

the �rst sweep, all the points with coordinates i = 1 + jp (j is a non-negative integer) are relaxed; in the

second, all the points with coordinates i = 2 + jp are relaxed (in this sweep the new values at previously

relaxed points are used); and so on until all the points are updated.

The e�ciency of a multicolor relaxation scheme applied to the convection operator improves when more

colors (in the streamwise direction) are used. In fact, the downstream relaxation is an extreme case where

the number of colors coincides with the number of grid nodes in the streamwise direction. However, the main

subject of this paper is parallel multigrid algorithms, therefore, relaxation schemes with only a few colors are

considered. Such schemes are very e�cient in parallel implementation. In our tests, we have experimented

with p = 4 because it appears to be a good tradeo� between parallel and convergence properties. In fact, as

we will show in Section 8, a suitable combination of di�erent multicolor smoothers in di�erent grids, where

the four-color smoother is always applied for �ne grids above some critical level, is found to be the optimal

solution in a parallel setting.

The value of � = 0:25 has been chosen to provide a good smoothing factor for the four-color relaxation

scheme.

3.2. Intergrid Transfers. The cell-centered location of the unknowns suggests that the coarse-grid

nodes are shifted relative to those of the �ne-grid. In our method, we add two additional nodes to all the

grids. These nodes are located precisely at the in
ow and out
ow boundaries (see Figure 1).

The �rst type of intergrid transfers encountered in multigrid methods is the computation of a coarse-grid

approximation to the current �ne-grid residual function. In the proposed method, an upwind restriction is
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Fig. 2. Uniform-grid discretization stencil.

used

(
R1 = 1

2r1;

Ri = 1
2

�
r2i�1 + r2i�2

�
;

(3.2)

where R and r denote the coarse- and �ne-grid residual functions respectively (see Figure 1).

The second type of intergrid transfers is the coarse-grid correction to the current �ne-grid solution. The

coarse-grid correction V is prolongated (linear interpolation) to the �ne grid by

8>><
>>:

v1 = 1
2V1;

v2i = 1
4

�
Vi+1 + 3Vi

�
;

v2i+1 = 1
4

�
3Vi+1 + Vi

�
;

(3.3)

where v is the correction to the �ne-grid solution approximation (see Figure 1).

The idea of using a �rst-order upwind restriction operator and a linear second-order prolongation oper-

ator was borrowed from [17].

4. Full-Dimensional Discretizations.

4.1. Uniform-Grid Discretization. The 3-D discretization is obtained from the low-dimensional

prototype discretization (2.4) by replacing function values at the ghost points (points with fractional indexes)

by weighted averages of the values at adjacent genuine grid points. The resulting narrow discretization scheme
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is de�ned by

Lhui1;i2;i3 � 1
h�

 
(1 + 2�)ui1;i2;i3

�(1 + �)

�
(1� tz)

�
(1� ty)ui1�1;i2;i3 + tyui1�1;i2�1;i3

�
+tz

�
(1� ty)ui1�1;i2;i3�1 + tyui1�1;i2�1;i3�1

��

��
�
(1� tz)

�
(1� ty)ui1+1;i2;i3 + tyui1+1;i2+1;i3

�
+tz

�
(1� ty)ui1+1;i2;i3+1 + tyui1+1;i2+1;i3+1

��

+�

�
ty(1� ty)

�
ui1;i2�1;i3 � 2ui1;i2;i3 + ui1;i2+1;i3

�

+tz(1� tz)
�
ui1;i2;i3�1 � 2ui1;i2;i3 + ui1;i2;i3+1

��!
= fi1;i2;i3 ;

i1 = 2; 3; : : :N � 1; i2 = 1; 2; : : :N; i3 = 1; 2; : : :N;N = 1=h:

(4.1)

See Figure 2 for a representation of the discretization within the domain.

The in
ow boundary conditions at i1 = 1 are discretized

Lhu1;i2;i3 � 1
h�

 
(2 + 3�)u1;i2;i3

�(2 + 2�)

�
(1� tz

2 )
�
(1� ty

2 )u0;i2;i3 +
ty
2 u0;i2�1;i3

�
+ tz

2

�
(1� ty

2 )u0;i2;i3�1 +
ty
2 u0;i2�1;i3�1

��

��
�
(1� tz)

�
(1� ty)u2;i2;i3 + tyu2;i2+1;i3

�
+tz

�
(1� ty)u2;i2;i3+1 + tyu2;i2+1;i3+1

��

+�

�
ty
2 (2� 3ty

2 )
�
u1;i2�1;i3 � 2u1;i2;i3 + u1;i2+1;i3

�

+ tz
2 (2� 3tz

2 )
�
u1;i2;i3�1 � 2u1;i2;i3 + u1;i2;i3+1

��!
= f1;i2;i3 ;

i2 = 1; 2; : : :N; i3 = 1; 2; : : :N;N = 1=h;u0;i2;i3 = g(i2h; i3h):

(4.2)
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Fig. 3. Rectangular-grid discretization stencil.

The discrete operators near the out
ow boundary are also derived from (3.1).

LhuN;i2;i3 � 1
h�

 
(1 + 3�)uN;i2;i3

�(1 + �)

�
(1� tz)

�
(1� ty)uN�1;i2;i3 + tyuN�1;i2�1;i3

�
+tz

�
(1� ty)uN�1;i2;i3�1 + tyuN�1;i2�1;i3�1

��

�2�
�
(1� tz

2 )
�
(1� ty

2 )uN+1;i2;i3 +
ty
2 uN+1;i2+1;i3

�
+ tz

2

�
(1� ty

2 )uN+1;i2;i3+1 +
ty
2 uN+1;i2+1;i3+1

��

+�

�
ty
2 (2� 3ty

2 )
�
uN;i2�1;i3 � 2uN;i2;i3 + uN;i2+1;i3

�

+ tz
2 (2� 3tz

2 )
�
uN;i2;i3�1 � 2uN;i2;i3 + uN;i2;i3+1

��!
= fN;i2;i3 ;

i2 = 1; 2; : : :N; i3 = 1; 2; : : :N;N = 1=h:

(4.3)

LhuN+1;i2;i3 � 2
h�

 
uN+1;i2;i3 �

�
(1� tz

2 )
�
(1� ty

2 )uN;i2;i3 +
ty
2 uN;i2�1;i3

�

+ tz
2

�
(1� ty

2 )uN;i2;i3�1 +
ty
2 uN;i2�1;i3�1

��!
= fN+1;i2;i3 ;

i2 = 1; 2; : : :N; i3 = 1; 2; : : :N;N = 1=h:

(4.4)

4.2. Rectangular-Grid Discretization. The coarse grids are 3-D Cartesian rectangular grids with

aspect ratios my = hx=hy and mz = hx=hz, where hx, hy and hz are the mesh sizes in the x, y and z
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directions respectively. The basic discretization to the problem (2.2) on a coarse grid is de�ned as

L
(hx;hy ;hz)
b ui1;i2;i3 � 1

h�

 
(1 + 2�)ui1;i2;i3

�(1 + �)

�
(1� sz)

�
(1� sy)ui1�1;i2+ky;i3+kz + syui1�1;i2+(ky+1);i3+kz

�
+sz

�
(1� sy)ui1�1;i2+ky;i3+(kz+1) + syui1�1;i2+(ky+1);i3+(kz+1)

��

��
�
(1� sz)

�
(1� sy)ui1+1;i2�ky;i3�kz + syui1+1;i2�(ky+1);i3�kz

�
+sz

�
(1� sy)ui1+1;i2�ky;i3�(kz+1) + syui1+1;i2�(ky+1);i3�(kz+1)

��

+�

�
sy(1� sy)

�
ui1;i2�1;i3 � 2ui1;i2;i3 + ui1;i2+1;i3

�

+sz(1� sz)
�
ui1;i2;i3�1 � 2ui1;i2;i3 + ui1;i2;i3+1

��!
= fi1;i2;i3 ;

i1 = 2; 3; : : :Nx; i2 = 1; 2; : : :Ny; i3 = 1; 2; : : :Nz; Nx = 1=hx; Ny = 1=hy; Nz = 1=hz;

(4.5)

where h� = hx
q
1 + t2y + t2z, ky + sy = �myty, kz + sz = �mztz , ky ; kz are integers, 0 � sy; sz < 1. See

Figure 3 for a pictorial explanation of the discretization stencil inside the domain. Note that on uniform grids

(my = mz = 1) the discretization (4.5) corresponds to (4.1) with sy = 1� ty, sz = 1� tz, and ky = kz = �1
provided 1 > ty > 0 and 1 > tz > 0.

The discretization in the in
ow boundary cells (i1 = 1) is de�ned similarly. Note, however, that the set

of the non-alignment parameters is di�erent.

L
(hx;hy;hz)
b u1;i2;i3 � 1

h�

 
(2 + 3�)u1;i2;i3

�2(1 + �)

�
(1� ~sz)

�
(1� ~sy)u0;i2+~ky ;i3+~kz

+ ~syu0;i2+(~ky+1);i3+~kz

�
+~sz

�
(1� ~sy)u0;i2+~ky ;i3+(~kz+1)

+ ~syu0;i2+(~ky+1);i3+(~kz+1)

��

��
�
(1� sz)

�
(1� sy)u2;i2�ky;i3�kz + syu2;i2�(ky+1);i3�kz

�
+sz

�
(1� sy)u2;i2�ky;i3�(kz+1) + syu2;i2�(ky+1);i3�(kz+1)

��

+�
2

�
sy(1� sy)

�
u1;i2�1;i3 � 2u1;i2;i3 + u1;i2+1;i3

�
+sz(1� sz)

�
u1;i2;i3�1 � 2u1;i2;i3 + u1;i2;i3+1

��

+�

�
~sy(1� ~sy)

�
u1;i2�1;i3 � 2u1;i2;i3 + u1;i2+1;i3

�

+~sz(1� ~sz)
�
u1;i2;i3�1 � 2u1;i2;i3 + u1;i2;i3+1

��!
= f1;i2;i3 ;

i2 = 1; 2; : : :Ny; i3 = 1; 2; : : :Nz; Ny = 1=hy; Nz = 1=hz;

(4.6)

where ~ky + ~sy = �my
ty
2 and ~kz + ~sz = �mz

tz
2 ,

~ky and ~kz are integers, 0 � ~sy; ~sz < 1.
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The out
ow discretizations are de�ned as

L
(hx;hy ;hz)
b uN;i2;i3 � 1

h�

 
(1 + 3�)uN;i2;i3

�(1 + �)

�
(1� sz)

�
(1� sy)uN�1;i2+ky ;i3+kz + syuN�1;i2+(ky+1);i3+kz

�
+sz

�
(1� sy)uN�1;i2+ky ;i3+(kz+1) + syuN�1;i2+(ky+1);i3+(kz+1)

��

�2�
�
(1� ~sz)

�
(1� ~sy)uN+1;i2�~ky ;i3�~kz

+ ~syuN+1;i2�(~ky+1);i3�~kz

�
+~sz

�
(1� ~sy)uN+1;i2�~ky ;i3�(~kz+1)

+ ~syuN+1;i2�(~ky+1);i3�(~kz+1)

��

+�
2

�
sy(1� sy)

�
uN;i2�1;i3 � 2uN;i2;i3 + uN;i2+1;i3

�
+sz(1� sz)

�
uN;i2;i3�1 � 2uN;i2;i3 + uN;i2;i3+1

��

+�

�
~sy(1� ~sy)

�
uN;i2�1;i3 � 2uN;i2;i3 + uN;i2+1;i3

�

+~sz(1� ~sz)
�
uN;i2;i3�1 � 2uN;i2;i3 + uN;i2;i3+1

��!
= fN;i2;i3 ;

i2 = 1; 2; : : :N; i3 = 1; 2; : : :N;N = 1=h:

(4.7)

L
(hx;hy ;hz)
b uN+1;i2;i3 � 2

h�

 
uN+1;i2;i3 �

�
(1� ~sz)

�
(1� ~sy)uN;i2;i3 + ~syuN;i2�1;i3

�

+~sz

�
(1� ~sy)uN;i2;i3�1 + ~syuN;i2�1;i3�1

��!
= fN+1;i2;i3 ;

i2 = 1; 2; : : :N; i3 = 1; 2; : : :N;N = 1=h:

(4.8)

4.3. Cross-Characteristic Interaction. The cross-characteristic interaction (CCI) introduced by a

discrete operator (inherent CCI) can be quantitatively estimated by the coe�cients of the lowest pure cross-

characteristic derivatives appearing in the �rst di�erential approximation (FDA) (see [45]) to the discrete

operator. In our model problem, the CCI appears only because of interpolation in the y-z plane. Therefore,

the true CCI is actually determined by the FDA coe�cients of @yy and @zz . The FDA to the uniform-grid

discretization (4.1) taken for a characteristic component u (@yu� @�u; @zu� @�u) is given by

FDA
�
Lh
�
= @� � T h

y h
2@yy � T h

z h
2@zz;(4.9)

where

T h
y =

ty(1�ty)

2h
p
1+t2y+t

2
z

;

T h
z = tz(1�tz)

2h
p
1+t2y+t

2
z

;
(4.10)

for the inner points (discretizations (4.1) and (4.3)) and

T h
y =

ty

2
(1�

ty

2
)

h
p
1+t2y+t

2
z

;

T h
z =

tz
2
(1� tz

2
)

h
p
1+t2y+t

2
z

;
(4.11)

for the boundary points i1 = 1 and i1 = N + 1 (discretizations (4.2) and (4.4)).
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The �rst di�erential approximation to the coarse-grid discretization is

FDA
�
L(hx;hy;hz)

�
= @� � T

(hx;hy;hz)
y h2y@yy � T

(hx;hy ;hz)
z h2z@zz(4.12)

where

T
(hx;hy;hz)
y =

sy(1�sy)

2hx
p
1+t2y+t

2
z

;

T
(hx;hy;hz)
z = sz(1�sz)

2hx
p
1+t2y+t

2
z

;
(4.13)

for the inner points (discretizations (4.5) and (4.7)) and

T
(hx;hy;hz)
y =

~sy(1�~sy)

hx
p
1+t2y+t

2
z

;

T
(hx;hy;hz)
z = ~sz(1�~sz)

hx
p
1+t2y+t

2
z

;
(4.14)

for the boundary points (discretizations (4.6) and (4.8)).

Previous studies on di�erent types of non-elliptic equations (see [3] and [4]) have shown that the main

di�culty in constructing an e�cient multigrid solver is a poor coarse-grid approximation to the �ne-grid

characteristic error components. It was observed that a coarse-grid operator de�ned on a grid built by full

coarsening unavoidably introduces a too strong CCI. On the other hand, a narrow discretization (4.5) on a

semicoarsened grid (only the x-directional mesh size is doubled) results in a coarse-grid CCI that is lower

than required. However, operator (4.5) on the semicoarsened grid can be supplied with additional terms

(explicit CCI), so that the total CCI would be exactly the same as on the �ne grid. Thus, one could derive

an appropriate coarse-grid operator by comparing the FDA (4.12) with the target-grid FDA (4.9)

L(hx;hy;hz)ui1;i2;i3 � L
(hx;hy ;hz)
b �Ay(ui1;i2�1;i3 � 2ui1;i2;i3 + ui1;i2+1;i3)

�Az(ui1;i2;i3�1 � 2ui1;i2;i3 + ui1;i2;i3+1);
(4.15)

where

Ay = T h
y � T

(hx;hy ;hz)
y ;

Az = T h
z � T

(hx;hy ;hz)
z :

(4.16)

The idea is that the characteristic error components oscillating highly in the cross-characteristic directions

are eliminated in relaxation, while the smooth characteristic components are well approximated on the coarse

grids with operator (4.15).

4.4. Uniform Cross-Characteristic Interaction. In general problems, where the non-alignment

parameters are changed from node to node (e.g., because of variable coe�cients or grid stretching), the

target-grid CCI may vary as well. It has been shown in [3] that for vertex-centered formulations, treatment

of a variable CCI is not a problem. The fact that the grids are nested ensures the quality of the coarse-

grid correction to the characteristic error components. The situation is di�erent for cell-centered grids.

In the case of (near) diagonal alignment, the inherent CCI vanishes on all the grids, and therefore all

the characteristic error components must be reduced in the coarse-grid correction. For non-nested grids,

however, the characteristic lines passing through the grid nodes on di�erent grids are parallel but do not

coincide (see Figure 4). This implies that the �ne-grid characteristic components oscillating highly in the

cross-characteristic direction cannot be approximated on the coarse grids. The proposed cure is to supply

the target grid discretization with explicit CCI terms (similar to the coarse-grid explicit CCI terms) ensuring

10



Inflow boundary condition

Target-grid discretization (8x8)

Coarse grid 2x8

Coarse grid 4x8

Characteristic line joining taget-grid nodes

Characteristic line joining coarser-grid nodes

Fig. 4. Characteristic lines in di�erent grid levels.

that the total CCI is never vanishes. In the multigrid solver reported in this paper, we impose a uniform

CCI, i.e., the total CCI in each discretization node satis�es

Ttotal =
0:19
h ;(4.17)

where h = hy = hz is the same on all the grids. This value of Ttotal approximately corresponds to the

maximum uniform-grid inherent CCI of the discretization (4.2). The maximum is taken over di�erent values

of the non-alignment parameters ty and tz.

5. The Multigrid Method. The proposed multigrid method for solving the convection equation

employs semicoarsening and narrow coarse-grid discretization schemes supplied with explicit terms (which

are discrete approximations to hy@yy and hz@zz with suitable coe�cients) to maintain on all the grids the

same uniform CCI. This construction ensures that all the characteristic error components are eliminated

fully by the coarse-grid correction. The non-characteristic error components must be reduced in relaxation.

Successive semicoarsening implies a fast decrease in the inherent CCI on coarse grids and, hence, a fast

increase in the weight of the explicit terms in the coarse-grid operators (since the total CCI remains �xed).

Eventually, on coarse grids, the cross-characteristic coupling de�ned by the explicit terms becomes dominant.

Thus, plane smoothers should be applied to reduce the non-characteristic error components.

The tested semicoarsening multilevel V (�1; �2) cycle consists of a four-color plane-implicit relaxation

scheme, an upwind restriction operator for the residual transfer, and a linear prolongation operator for

the coarse-grid correction. On each level, except the coarsest one where the problem is directly solved, �1

relaxation sweeps are performed before transferring residuals to the coarse grid and �2 sweeps are performed

after receiving coarse-grid corrections.

5.1. Plane Relaxation Scheme. The plane relaxation four-color scheme employed in the multigrid

cycle is derived from the one-dimensional scheme described in Section 3.1. Now, the number of colors

determines the order of relaxing the y-z grid planes. The planes with the x-axis coordinates i1 = 1 + jp,

(j 2 Z) are relaxed �rst, then the planes with i1 = 2+ jp, and so on; the last planes to be relaxed are those

with i1 = 4 + jp. In the plane relaxation scheme, all the solution values on the same y-z grid plane are

11



X

Y
Z

(i1,i2,i3)

s’z
s’y

sz
sy

3D restriction stencil

Fine grid

Low-dimensional prototype restriction stencil

Coarse grid
Characteristic line

(2i1 ,i2+ky,i3+kz)

(2i1,i2+ky+1,i3+kz)

(2i1,i2+ky,i3+kz+1)

(2i1,i2+ky+1,i3+kz+1)

(2i1-1,i2+k’ y,i3+k’ z)

(2i1 -1,i2+k’ y+1,i3+k’ z)

(2i1 -1,i2+k’ y,i3+k’ z+1)

(2i1 -1,i2+k’ y+1,i3+k’ z+1)

hx

Fig. 5. Full-dimensional stencil of the restriction operator.

updated altogether. Simultaneous solution of all the equations centered on a plane would reduce residuals

in this plane to zero. However, an exact solution is not needed [23, 37]; the planes are solved approximately

by a single 2-D V(1,1) multigrid cycle with an alternating-line smoother. This inexact solution of the planes

does not decrease the convergence of the multigrid algorithm.

5.2. Intergrid Transfers. The residual transfer to the semicoarsened grid is given by

Ri1;i2;i3 =
1
2

 �
(1� �sz) ((1� �sy)r2i1;i2+�ky ;i3+�kz + �syr2i1;i2+�ky+1;i3+�kz )

+�sz ((1� �sy)r2i1;i2+�ky ;i3+�kz+1 + �syr2i1 ;i2+�ky+1;i3+�kz+1)
�

+
�
(1� s0z) ((1� s0y)r2i1�1;i2+k0

y ;i3+k
0

z
+ s0yr2i1�1;i2+k0

y+1;i3+k
0

z
)

+s0z ((1� s0y)r2i1�1;i2+k0

y ;i3+k
0

z+1 + s0yr2i1�1;i2+k0

y+1;i3+k
0

z+1)
�!

(5.1)

where ri1;i2;i3 = fi1;i2;i3 �L(hx;hy;hz)ui1;i2;u3 is the �ne-grid residual function, and Ri1;i2;i3 is the coarse-grid

residual function. The non-alignment parameters for the restriction operator are de�ned as �ky+�sy = �my

4 ty,
�kz + �sz = �my

4 tz, k
0
y + s0y = � 3my

4 ty, and k0z + s0z = � 3mz

4 tz, where �ky, �kz,k
0
y , and k0z are integers,

0 � �sy; �sz; s
0
y; s

0
z < 1, andmy andmz are the aspect ratios in the coarse grid. See Figure 5 for a representation

of the restriction operator.
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X

Y
Z
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Fine grid

Low-dimensional prototype prolongation stencil

Coarse grid
Characteristic line

sz

s’y

sy

s’z

hx

(i1 -1,i2+ky,i3+kz)

(i1 -1,i2+ky+1,i3+kz)

(i1 -1,i2+ky,i3+kz+1)

(i1 -1,i2+ky+1,i3+kz+1)

(2i1,i2,i3)

(i1,i2-k’ y,i3-k’ z-1)

(i1,i2-k’ y,i3-k’ z)

(i1,i2-k’ y-1,i3-k’ z)

(i1,i2-k’ y-1,i3-k’ z-1)

Fig. 6. Full-dimensional stencil of the prolongation operator.

The coarse-grid correction operator is a linear interpolation de�ned by the following formulae. For the

nodes with even x-directional indices,

v2i1;i2;i3 =
1
4

 �
(1� s0z)

�
(1� s0y)Vi1�1;i2+k0

y ;i3+k
0

z
+ s0yVi1�1;i2+k0

y+1;i3+k
0

z

�

+s0z

�
(1� s0y)Vi1�1;i2+k0

y ;i3+k
0

z+1 + s0yVi1�1;i2+k0

y+1;i3+k
0

z+1

��

+3

�
(1� �sz)

�
(1� �sy)Vi1 ;i2��ky;i3��kz + �syVi1;i2��ky�1;i3��kz

�

+�sz

�
(1� �sy)Vi1 ;i2��ky;i3��kz�1 + �syVi1;i2��ky�1;i3��kz�1

��!
;

(5.2)

and for the nodes with odd x-directional indices,

v2i1�1;i2;i3 =
1
4

 
3

�
(1� �sz)

�
(1� �sy)Vi1�1;i2+�ky ;i3+�kz + �syVi1�1;i2+�ky+1;i3+�kz

�

+�sz

�
(1� �sy)Vi1�1;i2+�ky ;i3+�kz+1 + �syVi1�1;i2+�ky+1;i3+�kz+1

��

+

�
(1� s0z)

�
(1� s0y)Vi1 ;i2�k0

y;i3�k0

z
+ s0yVi1;i2�k0

y�1;i3�k0

z

�

+s0z

�
(1� s0y)Vi1 ;i2�k0

y;i3�k0

z�1 + s0yVi1;i2�k0

y�1;i3�k0

z�1

��!
;

(5.3)

where V is the coarse-grid solution and v is the correction to the �ne-grid solution approximation. The non-

alignment parameters for the prolongation operator are similar to those de�ned for the restriction operator.

See Figure 6 for a pictorial representation of the prolongation operator.

5.3. Multigrid Cycle. In the full dimension, a multigrid V (�1; �2) cycle employing semicoarsening

can be de�ned as the following �ve steps

Step 1: Prerelaxation sweeps. The current approximation is improved by �1 plane-implicit relaxation sweeps.
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Step 2: Residual transfer. The coarse-grid approximation to the �ne-grid residual function is calculated by

means of (5.1).

Step 3: Coarse-grid solution. The coarse-grid problem is solved by the recursive call of the same V (�1; �2)

cycle. On the coarsest grid, the problem is solved directly.

Step 4: Coarse-grid correction. The coarse-grid solution is interpolated by (5.2), (5.3) to the �ne grid. The

current �ne-grid approximation is corrected.

Step 5: Postrelaxation sweeps. The current �ne-grid approximation is improved by �2 plain-implicit relax-

ation sweeps.

5.4. Implementation Aspects. The code has been implemented to deal with structured rectangular

grids with stretching. A generalization of discretization (4.15) and intergrid transfers (5.1), (5.2), (5.3) is

applied. The non-alignment parameters are di�erent at each grid node. We could recompute and store the

non-alignment parameters in the memory so we do not have to recompute them each time the residual,

the metrics or the intergrid transfers are computed. However, such an approach increases the memory

requirements of the code.

Before applying the multigrid cycles, the metrics and the non-alignment parameters for the discretization

in the left, central and right planes are calculated and stored for each node and grid. However, the non-

alignment parameters for the intergrid transfers are recomputed each time the operators are applied. This

solution provides a trade-o� between computing and wasted memory.

Table 6.1

Asymptotic/geometric-average convergence rate for the solver-case combinations.

643 1283

case 1 case 2 case 3 case 4 case 1 case 2 case 3 case 4

solver 1 0.07/0.06 0.06/0.05 0.09/0.07 0.04/0.04 0.08/0.07 0.06/0.05 0.10/0.08 0.04/0.04

solver 2 0.16/0.18 0.11/0.10 0.25/0.28 0.08/0.07 0.24/0.29 0.17/0.19 0.39/0.44 0.10/0.08

6. Numerical Results. The in
ow boundary conditions for the test problems were chosen so that

the function U(x; y; z) = cos(!(y + z � (ty + tz)x)) is the exact continuous solution of the homogeneous

(fi1;i2;i3 = 0) problem (2.2). The initial approximation was interpolated from the solution on the previous

coarse grid.

The frequencies ! = 8� for a 643 grid and ! = 16� for a 1283 grid were chosen to reduce the total

computational time exploiting periodicity and to provide a reasonable accuracy in approximating the true

solution of the di�erential equation. Two cycles, with (solver 1) and without (solver 2) explicit CCI terms

in coarse-grid operators, were compared on 643 and 1283 uniform grids for the non-alignment parameters

� ty = 0:2 tz = 0:2 (case 1)

� ty = 0:98 tz = 0:2 (case 2)

� ty = 0:5 tz = 0:0 (case 3)

� ty = 0:98 tz = 0:98 (case 4)

Table 6.1 contains the asymptotic and geometric-average convergence rates and Figure 7 shows the

residual history versus work units; the work unit is the computer-operation count in the target-grid residual

evaluation.

The plane solver used in the 3-D smoothing procedure is a robust two-dimensional (2-D) multigrid

V(1,1)-cycle employing full coarsening and alternating-line smoothers; the approximate 2-D solution obtained

after one 2-D cycle is su�cient to provide robustness and good convergence rates in the 3-D solvers. The
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Fig. 7. Residual versus work units for V (1; 1) cycles with semicoarsening: Solver 1 (with explicit CCI terms) and Solver

2 (without explicit CCI terms) for a 1283 grid and w = 16�.

combination of semicoarsening, the four-color plane-implicit smoother, and the introduction of explicit CCI

terms in grid discretizations (solver 1) yields a multigrid solver with fast grid-independent convergence rates

for any angles of non-alignment. The algorithm without explicit CCI terms (solver 2) presents a worse and

grid-dependent convergence rates.

Stretched grids are commonly used in CFD grid generation to pack points into regions with large solution

gradients while avoiding an excess of points in more benign regions, and to capture viscous e�ects in the

boundary layers. The stretching of the grid in a given direction is determined by the stretching geometric

factor � (quotient between two consecutive space steps, hk = �hk�1), which produces aspect ratios up to

�N�1 if the three directions are equally stretched. In order to study the e�ect of stretching on the behavior

of the solvers, the grids were stretched using a geometric factor � = 1:1 (Figure 8), which produces aspect

ratios up to order 105 on 1283 grids.

Two multigrid cycles, with CCI correction in every grid operator (solver 1) and without explicit CCI

terms (solver 2) were compared on 643 and 1283 stretched grids for the non-alignment parameters

� ty = 0:2 tz = 0:2 (case 1)

� ty = 0:98 tz = 0:2 (case 2)

� ty = 0:5 tz = 0:0 (case 3)

� ty = 0:98 tz = 0:98 (case 4)

Table 6.2 contains the asymptotic and geometric-average convergence rates and Figure 9 shows the
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Fig. 9. Residual versus work units for V (1; 1) cycles with semicoarsening: Solver 1 (with explicit CCI terms) and Solver

2 (without explicit CCI terms) for a stretched 1283 grid and w = 16�.

residual history versus work units. The multigrid cycle without explicit CCI terms (solver 2) always presents a

grid-dependent convergence rate. The combination of semicoarsening, the four-color plane-implicit smoother,

and a uniform CCI correction in all grids (solver 1) yields a multigrid solver with fast grid-independent

convergence rates for any angles of non-alignment and grid stretching.
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Table 6.2

Asymptotic/geometric-average convergence rate for the solver-case combinations with grid stretching.

643 1283

case 1 case 2 case 3 case 4 case 1 case 2 case 3 case 4

solver 1 0.10/0.07 0.10/0.07 0.11/0.08 0.10/0.07 0.10/0.07 0.10/0.07 0.12/0.09 0.10/0.07

solver 2 0.13/0.13 0.23/0.18 0.23/0.20 0.22/0.18 0.20/0.21 0.23/0.27 0.30/0.36 0.24/0.28

7. E�cient Solution of the Convection-Di�usion Operator. In this Section we will study the

3-D constant-coe�cient convection-di�usion equation

��U = F (x; y; z) +
�
�a � r

�
U;(7.1)

where �a = (a1; a2; a3) is a given vector and � is a positive scalar. The solution U(x; y; z) is a di�erentiable

function de�ned on the unit square (x; y; z) 2 [0; 1]� [0; 1]� [0; 1].

Equation (7.1) can be rewritten as

�(@xxU + @yyU + @zzU) = F (x; y; z) + j�aj@�U;(7.2)

and with the additional streamwise dissipation as

�(@xxU + @yyU + @zzU) = F (x; y; z) + j�aj(@�U � �h�@��U);(7.3)

where j�aj =
p
a21 + a22 + a23, and � =

x+tyy+tzzp
1+t2y+t

2
z

is a variable along the characteristic of the convective part.

Equation (7.1) is subject to Dirichlet boundary conditions at the in
ow boundary x = 0, Neumann boundary

conditions at the out
ow boundary x = 1 and periodic conditions in the y and z directions

U(0; y; z) = g(y; z); Ux(1; y; z) = 0; U(x; y; z) = U(x; y + 1; z); U(x; y; z) = U(x; y; z + 1);(7.4)

where g(y; z) is a given function.

For the di�usive part, the left-hand side of Eq. (7.3), on stretched grids, each cell can have a di�erent

aspect ratio. So its discretization is given by the following general discrete operator:

2�

hxi1
(

ui1�1;i2;i3

hxi1 + hxi1�1
� (

ui1;i2;i3
hxi1 + hxi1+1

+
ui1;i2;i3

hxi1 + hxi1�1
) +

ui1+1;i2;i3
hxi1 + hxi1+1

) +

2�

hyi2
(

ui1;i2�1;i3

hyi2 + hyi2�1
� (

ui1;i2;i3
hyi2 + hyi2+1

+
1

hyi2 + hyi2�1
) +

ui1;i2+1;i3
hyi2 + hyi2+1

) +(7.5)

2�

hzi3
(

ui1;i2;i3�1

hzi3 + hzi3�1
� (

ui1;i2;i3
hzi3 + hzi3+1

+
ui1;i2;i3

hzi3 + hzi3�1
) +

ui1;i2;i3+1
hzi3 + hzi3+1

);

i1 = 1; :::; Nx; i2 = 1; :::; Ny; i3 = 1; :::; Nz:

We use the same multigrid method as the one previously applied for the convection operator (four-

color plane-implicit relaxation scheme combined with semicoarsening). For the di�usion operator, however,

symmetric (rather than upwind biased) versions of the intergrid transfers are preferable. For example, the

restriction operator

Ri1;i2;i3 =
1

2

�
r2i1;i2;i3 + r2i1+1;i2;i3

�
;(7.6)

and the prolongation operator8<
:

v2i1;i2;i3 = 1
4

�
Vi1�1;i2;i3 + 3Vi1;i2;i3

�
;

v2i1�1;i2;i3 = 1
4

�
3Vi1�1;i2;i3 + Vi1;i2;i3

�
;

(7.7)
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(compare with (5.1)-(5.3)) were successfully used in [37] to build a robust multigrid method based on semi-

coarsening combined with plane-implicit smoothing for solving the anisotropic di�usion operator (7.5). Vol-

ume weighted versions of (7.6) and (7.7) are required for stretched grids.

The intergrid transfers for the convection-di�usion equation are implemented as a weighted average of

the operators (5.1) and (7.6) for the restriction operator and the operators (5.2)-(5.3) and (7.7) for the

prolongation operator. Speci�cally, the operators (7.6) and (7.7) are taken with the weighting �
j�ajh , while

the weighting of the operators (5.1)-(5.3) is
�
1� �

j�ajh

�
. If �

j�ajh � 1, only symmetric operators are used.

Again, the in
ow boundary conditions for the test problems were chosen so that g(y; z) = cos(!(y+ z))

and Fi1 ;i2;i3 = 0. The initial approximation was interpolated from the solution on the previous coarse grid

and the frequencies ! = 8� for a 643 grid and ! = 16� for a 1283 grid were chosen. Two multigrid cycles,

with (solver 1) and without (solver 2) explicit CCI terms in operators, were compared on 643 and 1283

uniform grids for the non-alignment parameters ty = tz = 0:5 and the following di�usive values:

� case 1: � � 10�4, very small di�usion, the problem is convective dominated

� case 2: � � j�ajh, small di�usion, the physical di�usion is of the same order as the inherent numerical
dissipation in the target grid

� case 3: � � 6j�ajh, intermediate di�usion, the physical di�usion is larger than the inherent numerical

dissipation in the target grid, but smaller than a possible inherent numerical dissipation in some

coarse grids

� case 4: � � 1:0, large di�usion, the physical di�usion is O(1)

� case 5: � � 103, very large di�usion, the problem is di�usive dominated

Tables 7.1 and 7.2 contain the asymptotic and geometric-average convergence rates for V(1,1) cycles on

uniform and stretched grids respectively. Both the solvers present fast grid-independent convergence rates

for problems with a non-negligible di�usive part (cases 2-5). However, as was previously shown in Section 6,

the convergence rate becomes grid dependent without explicit CCI terms for convection dominated problems

(case 1).

Table 7.1

Asymptotic/geometric-average convergence rate for the solver-case combinations for the convection-di�usion problem.

643

case 1 case 2 case 3 case 4 case 5

solver 1 0.06/0.06 0.10/0.09 0.09/0.07 0.07/0.05 0.05/0.05

solver 2 0.27/0.31 0.09/0.08 0.09/0.07 0.07/0.05 0.05/0.05

1283

case 1 case 2 case 3 case 4 case 5

solver 1 0.10/0.08 0.10/0.09 0.09/0.07 0.07/0.05 0.05/0.05

solver 2 0.42/0.46 0.09/0.07 0.09/0.07 0.07/0.05 0.05/0.05

8. Parallel Implementation. The main advantage of the multigrid algorithm proposed in this report

is its parallel potential. We now describe a parallel implementation of the algorithm, based on MPI, and its

e�ciency on two di�erent parallel systems; a Cray T3E-900 (T3E) and an SGI Origin 2000 (O2K).

The test problem chosen in the experiments carried out in this section is the convection-di�usion equation

(7.3) with boundary conditions (7.4), so that g(y; z) = cos(!(y + z)), and Fi1;i2;i3 = 0. We have selected

frequencies ! = 8� and 16� for 643 and 1283 grids respectively, with ty = tz = 0:5 as non-alignment

parameters and � � 10�4 as the di�usive value (case 1 in the previous Section). The initial approximation
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Table 7.2

Asymptotic/geometric-average convergence rate for the solver-case combinations for the convection-di�usion problem with

grid stretching.

643

case 1 case 2 case 3 case 4 case 5

solver 1 0.11/0.08 0.15/0.12 0.15/0.10 0.13/0.09 0.16/0.09

solver 2 0.24/0.21 0.15/0.13 0.15/0.10 0.13/0.09 0.16/0.09

1283

case 1 case 2 case 3 case 4 case 5

solver 1 0.12/0.09 0.15/0.11 0.15/0.11 0.14/0.09 0.14/0.09

solver 2 0.30/0.38 0.15/0.13 0.15/0.13 0.14/0.09 0.14/0.09

was interpolated from the solution on the previous coarse grid.

8.1. Cray T3E and SGI Origin 2000 Architectures. The T3E that we have used in this study

is based on the DEC Alpha 21164 (DEC Alpha EV5) processor running at 450 MHz. This processor has

two levels of caching on-chip (8-KB �rst-level instructions and data caches, and a uni�ed 96-KB second-level

cache). However, unlike other systems, the EV5 contains no board-level cache. The nodes (or processors in

this case) are connected by means of a 3-D torus network, whose links provide a raw bandwidth of 600 MB/s

in each direction [5, 1]. Nevertheless, the e�ective communication bandwidth obtained with the classical

ping-pong test is approximately 300 MB/s (around half of the peak) [32].

The O2K employed consists of 32 MIPS R10000 processors running at 250 MHz. This processor has

32-KB primary data and instruction caches on chip, but its uni�ed 4-MB L2 cache is external. Unlike the

T3E, each O2K node consists of two processors connected by a system bus (SysAD bus). Along with the

processors, each node has a portion of the shared main memory (512 MB in our system), a directory for cache

coherence, an I/O interface, and the Hub, which is the combined communication/coherence controller and

network interface. The network is based on a 
exible switch called SPIDER. Two nodes (four processors) are

connected to each switch through their Hubs. Systems with 32 processors, such as the one that we have used,

are created from a three-dimensional hypercube of switches where only �ve of the six links on each router

are used. The peak bandwidth of the bus that connects the two processors and the Hub's connections to

memory and routers is 780 MB/s. However, at user level, the actual e�ective bandwidth between processors

is much lower than the peak, due to the cache-coherency protocol and other overheads [5, 20]. Using MPI,

the maximum achievable bandwidth is only around 140 MB/s [32]. We should mention that in this system,

we have combined MPI with the SGI dplace tool in order to disable the automatic page migration, which is

not useful in MPI programs, and also to specify the distributions of threads onto memories since both these

characteristics improve performance [39].

8.2. Parallel Strategies. Basically, one can adopt two di�erent strategies to get a parallel implementa-

tion of a multigrid method: domain decompositions combined with multigrid (DD-MG) and grid partitioning

(MG-DD).

The DD-MG approach consists in applying a domain decomposition on the �nest grid, and using a

multigrid method inside each block. These kind of methods are often considered with �nite element dis-

cretization since they are easier to implement and can be directly applied to general multi-block grids. From

an architectural point of view, they also imply fewer communications since they are only required on the

�nest grid. However, they lead to algorithms which are numerically di�erent to the sequential version and
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Fig. 10. 1-D, 2-D and 3-D decompositions of a three-dimensional domain

have a negative impact on the convergence rate [40].

We have limited this research to the MG-DD technique. In this approach, multigrid is used to solve

the problem in the whole grid, i.e. domain decomposition is applied on each level. Therefore, it implies

more communication overheads since data exchange is required on every level. However, unlike DD-MG

approaches, it retains the convergence rate of the sequential algorithm [24]. Regarding multi-block grids,

we should mention that an adequate hybrid approach, where the V-cycle is applied throughout the entire

domain while the smoothers are performed inside each block (domain decomposition for the smoother), has

been proposed in [21, 22].

As is well known, for three-dimensional domains three di�erent decompositions are possible (see Figure

10). Common grid transfer operators such as linear interpolation and full weighted restrictors are parallel

by nature. Hence, regarding these operators, it does not matter which decomposition is chosen. However,

2-D and 3-D decompositions require a parallel plane solver for the smoothing process. Therefore, as we have

employed an alternating-line smoother in the plane solver, such partitionings need a parallel tridiagonal

solver. This problem has been widely studied (see for example [19, 16, 26, 18, 11]). More speci�cally, we

have studied, in [12, 13], tridiagonal solvers in the context of an alternating line process such as the plane

smoother of our multigrid algorithm. In particular, we have revised a Pipelined Gaussian Elimination method

[31, 30], Wang's algorithm [43], and several methods based on data transpositions [13]. The experimental

results obtained on a T3E-900 with up to 512 processors have been quite satisfactory for large and even

moderate 2-D problem sizes (from a 10242 problem size), with parallel e�ciencies in the range 0.7 to 0.9.

However, current memory limitations prevent us from solving 3-D problems whose corresponding 2-D planes

are big enough to obtain reasonable e�ciencies on medium-sized parallel computers.

We have taken the decision, based on these results, to use a 1-D data decomposition in the semi-

coarsened direction, since it does not require a parallel 2-D solver. Considering that our code was written

in C language, where 3-D matrices are stored in a row-ordered (x,y,z)-array, YZ and XZ-planes represent

continuous data (except for the gap between di�erent z-columns), while XY-planes reference data that have

a stride of twice the number of elements in dimension Z (see Figure 11). Consequently, x-semicoarsening

and y-semicoarsening are more e�cient than z-semicoarsening, because they exhibit a better spatial locality.

For the same reasons, x and y-semicoarsening are also the best choice in terms of message passing, since

the e�ective communication bandwidth on the systems under study also presents a signi�cant dependence

on the spatial locality of the messages [32, 33]. Just to give a few results, using the Apprentice pro�ling

tool on the T3E, we have recorded that for a 643 problem size on a two-processor simulation the time spent
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Fig. 11. Access patterns for di�erent planes

performing data cache operations using z-partitioning is about 17% larger than with the x-partitioning [32].

All the experimental results presented in this paper have been obtained using an x-direction partitioning,

that is, x-semicoarsening combined with YZ-plane smoothers.

Regarding data locality, we should mention that in order to improve the data locality of iterative methods

some authors have successfully employed di�erent techniques, such as data access transformations (loop

interchange, loop fusion, loop blocking, and prefetching) and data layout transformations (array padding

and array merging)[36, 35, 10]. Our codes have been compiled using aggressive compiler options (Ofast=ip27

on the O2K and O3 on the T3E), but we have not employed any data transformations to optimize cache

reuse. However, plane smoothers allow a better exploitation of the temporal locality compared to common

point smoothers, which have to perform global sweeps through data sets that are too large to �t in the cache.

8.3. Critical Level Problem. Although 1-D decompositions have no need for a parallel plane smoother,

they also present some drawbacks caused by the need to solve exactly the linear system of equations on the

coarsest grid. In sequential algorithms, the coarsest level is usually chosen as coarse as possible to reduce

the computational cost. However, in the parallel versions, this decision may cause some processors to remain

idle on the coarsest grids. To clarify this problem, it is convenient to de�ne the multigrid critical level as

the level L where the following condition is satis�ed:

N(L)

coef � P = 1(8.1)

where N(L) is the local number of cells per side of level L in the partitioned direction. The parameter

coef depends on the smoother: 1 for damped Jacobi, 2 for zebra and 4 for four-color. P is the number

of processors. So, the critical level is the coarsest level at which all processors can perform the smoothing

operation concurrently, or in other words, the multigrid level where each processor has one local plane in the

case of a damped Jacobi smoother, two planes for a zebra update and four planes in the case of a four-color

update. Below the critical level, the parallel algorithm has load-balance problems that reduce its e�ciency

since the number of idle processors is doubled on every level below the critical one. It also complicates
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its implementation, because as we go down below the critical level, we have to dynamically rearrange the

communication patterns and grid distributions.

2-D and 3-D decompositions can help to reduce this problem. For example, for 3-D decompositions, the

critical level is de�ned as the �nest level L where the following condition is satis�ed:

(
Nx(L)

coef � Px _ Ny(L)

coef � Py _ Nz(L)

coef � Pz ) = 1(8.2)

whereNx(L), Ny(L), Nz(L) are the local number of cells per side on level L in direction x, y and z respectively,

and Px, Py and Pz are the number of processors in direction x, y and z respectively.

Without losing generality, we can assume Px = Py = Pz = P�1=3, where P is the total number

of processors, and Nx(L)= Ny(L)=Nz(L) = N(L). Therefore, the critical level L satis�ed the following

condition:

N(L)

coef � P�1=3
= 1(8.3)

Comparing expressions (8.1) and (8.3), it is evident that the critical level is coarser in 2-D and 3-D

decompositions. In addition, for a 3-D regular application the communication requirements for a process

grow in proportion to the size of the boundaries, while computations grow in proportion to the size of

the entire partition. The communication to computation ratio is thus a surface area to volume ratio and

so the 3-D decomposition leads to a lower inherent communication-to-computation ratio. However, 3-D

decompositions require non-contiguous boundaries and, as discussed in [32, 33], the e�ective bandwidth is

reduced due to non-unit-stride access. In fact, 2-D data partitioning is found to be a trade-o� between the

improvement of the message data's locality and the e�cient exploitation of the underlying communication

system. However, as we have explained above, 2-D decompositions are not satisfactory when a plane-wise

smoother is employed.

Some alternatives, which can be applied to 1-D decompositions, have been proposed to relieve the

critical-level problem. Among these, we can mention in particular:

� Agglomeration on coarsest grids [28]. Multigrid may be faster using only one processor on the

coarsest grids (below the critical level) because the communication overhead is reduced. In our

application, it increases the overall execution time since in using x-semicoarsening and a plane-wise

smoother, the time spent by the sequential algorithm on the coarser grids is not negligible.

� Parallel superconvergent multigrid [15, 27, 14]. This approach keeps the processors busy below the

critical level using multiple coarse grids. Although it slightly increases the execution time, since extra

work is necessary to merge the solutions of the di�erent grids, it may improve the convergence prop-

erties of the method. Nevertheless, in our case, we have not found any satisfactory merging operator.

� U-Cycle method [44]. This approach avoids idle processors �xing the number of grid levels so that

the coarsest grid employed is the critical one. However, the number of iterations needed to solve the

system of equations on the coarsest problem grows with system size, and the time expended on the

coarsest level becomes dominant [34, 37, 38].
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Fig. 12. Parallel e�ciency of four-color smoother (FCS) and hybrid smoother (HS) V(1,1)-cycles obtained on a SGI

Origin 2000 (left-hand chart) and a Cray T3E (right-hand chart) using 643 uniform grids for up to 32 processors.

8.4. Hybrid Smoother Strategy. We have opted to relieve the critical level problem by changing the

smoother operator. As is well known, the four-color smoother (FCS) exhibits �ner granularity than other

common smoothers such as damped Jacobi or zebra. So, in order to improve the granularity of the solver,

we have implemented a hybrid smoother (HS) that uses a four-color update in and above the critical level,

a zebra smoother at the level where every processor has two planes, and a damped Jacobi method below

that level. As we will show, although this smoother degrades the convergence properties of the method, it

improves the execution time of the multigrid cycle. Taking both factors into account, this approach can be

seen as a trade-o� between the numerical and the arquitectural properties.

Figure 12 shows the e�ciency of one V(1,1) multigrid cycle on a 643 uniform grid obtained on the T3E

and O2K systems using both FCS and HS. As usual, the e�ciency has been de�ned as Ts
P�Tp

, where Ts is

the execution time of the V(1,1) sequential cycle using FCS and �ve multigrid levels, P is the number of

processors and Tp is the execution time of the parallel V(1,1) cycle.

Obviously, the lower the number of levels, the higher the e�ciency, because the computation-communication

ratio is higher. A similar e�ciency pattern is exhibited in both systems because the ine�ciency is mainly

due to the load imbalance below the critical level. The overhead due to interprocessor communication is

very low. Notice that the e�ciency does not decrease to below 1 when the coarsest level is �ner than the

number of processors. Although we have included results for 32-processor simulations, it is obvious that a

643 problem is not big enough to obtain satisfactory e�ciencies in this case. As expected, HS presents higher

e�ciencies because its granularity is higher below the critical level.

Despite this, as Figure 13 shows, the convergence rate per multigrid cycle strongly depends on the

smoother. Consequently, as the convergence factor of the parallel algorithm may di�er from that of the

sequential version, in order to compare both alternatives we should use another de�nition of e�ciency which

includes both numerical (convergence) and architectural (parallel) properties. We have opted to use an

e�ciency de�nition based on the execution time needed to solve the whole problem, i.e. to reach a certain

residual norm. In particular, we have chosen 10�12 and the corresponding e�ciency will be referred to

hereafter as the realistic parallel e�ciency [25]. Figure 14 shows this realistic e�ciency on both systems.

In the FCS approach, the realistic e�ciency is similar to the e�ciency of one V(1,1) cycle, since the

convergence rate does not su�er any signi�cant deterioration. This is not the case of the HS approach.

However, despite the convergence deterioration caused by this technique, this is the best choice on both
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Fig. 13. Convergence factor of four-color smoother (FCS) and hybrid smoother (HS) V(1,1)-cycles on a 643 uniform grid

for di�erent multigrid levels.
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Fig. 14. Realistic parallel e�ciency of four-color smoother (FCS) and hybrid smoother (HS) V(1,1)-cycles obtained on a

SGI Origin 2000 (left-hand chart) and a Cray T3E (right-hand chart) using 643 uniform grids for up to 32 processors.

systems. Figure 15 shows the realistic e�ciency on the O2K for the 1283 problem size. Due to memory

limitations, we cannot obtain results on the T3E for bigger problems. In this case, an HS with �ve multigrid

levels, a trade-o� between numerical and parallel properties, is the best choice and satisfactory e�ciencies

(higher than 0.8) are obtained for up to 32 processors.

9. Conclusions and Future Work. The combination of semicoarsening, a four-color plane-implicit

smoother and the introduction of explicit CCI terms in the discretization of all grids yields an e�cient highly

parallel multigrid solver for the convection-di�usion equation with fast grid-independent convergence rates

for any angle of non-alignment. This solver permits the parallel solution of a convective process that is

sequential in nature.

We have opted to employ a 1-D grid partitioning in the semicoarsened direction. This solution avoids

the parallel implementation of the plane solvers that has been previously reported to have a low e�ciency for

small problems. One-dimensional x-semicoarsening is the best choice in terms of message passing since the

e�ective communication bandwidth on the systems under study (Cray T3E and SGI Origin 2000) presents a

signi�cant dependence on the spatial locality of the messages. Below the critical level, the parallel algorithm

has load-balance problems that reduce its e�ciency since the number of idle processors is doubled on every
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Fig. 15. Realistic parallel e�ciency of four-color smoother (FCS) and hybrid smoother (HS) V(1,1)-cycles obtained on

an SGI Origin 2000 using 1283 uniform grids for up to 32 processors.

level below the critical one. It also complicates its implementation, because as we go down below the critical

level, we have to dynamically rearrange the communication patterns and grid distributions.

Di�erent alternatives have been studied in order to avoid the critical level problem: agglomeration on

coarsest grids, the parallel superconvergent method and the U-cycle approach. Finally, the critical level

problem is relieved by using a hybrid smoother that applies the optimal smoother on each level in terms of

its convergence rate and granularity. The hybrid smoother uses a four-color update on and above the critical

level, a zebra smoother at the level where every processor has two planes, and a damped Jacobi method

below that level. Although this smoother degrades the convergence properties of the method, it improves the

execution time of the multigrid cycle in a parallel setting. Taking both factors into account, this approach

is found to be an optimal trade-o� between the numerical and the arquitectural properties. Satisfactory

e�ciencies (higher than 0.8) are obtained for up to 32 processors on a 1283 uniform grid.

Although not included in this report, experiments with pointwise smoothers were also performed. On

�nest grids, where the direction of the strongest coupling approximately coincides with the characteristic

direction, a pointwise smoother can be as e�cient as a plane-implicit smoother. Using pointwise smoothers

on the �nest (most expensive) grids considerably reduces the work-unit count of the approach. The coupling

analysis provides a criterion to switch between point and plane smoothers in the multigrid cycle. Such

an approach was successfully applied in [7] for 2-D vertex-centered grids and its extension for 3-D cell-

centered grids will be a subject for future studies. We intend to continue the work on the e�ective solution

of convection-dominated problems. In particular, we will apply the CCI correction technique to improve

the parallel properties and convergence rate of the multigrid resolution of the Navier-Stokes equations by

distributive smoothers.
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